Rzutowanie. dr Radosław Matusik. radmat

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rzutowanie. dr Radosław Matusik. radmat"

Transkrypt

1 radmat

2 Warunki zaliczenia przedmiotu Na ćwiczeniach przez cały semestr będą realizowane dwa projekty w Unity (3D i 2D). Do uzyskania 3 z ćwiczeń wystarczy poprawnie zrealizować oba projekty. Ponadto na wykładach będą zadawane projekty obejmujące różne zagadnienia i technologie dotyczące tworzenia gier komputerowych, które także będą realizowane na ćwiczeniach (i oceniane na wykładach). liczba zrealizowanych projektów ocena projekty z Unity i 7-8 projektów 5 projekty z Unity i 5-6 projektów 4.5 projekty z Unity i 3-4 projekty 4 projekty z Unity i 1-2 projekty 3.5 projekty z Unity 3 Do zaliczenia przedmiotu wystarczy zaliczenie ćwiczeń.

3 Cel wykładu Celem wykładu jest prezentacja rzutu perspektywicznego oraz rzutu równoległego, które mogą być wykorzystywane w grach komputerowych, grafice komputerowej czy też aplikacjach multimedialnych.

4 Przestrzeń modelu i przestrzeń świata Niezwykle ważnym pojęciem z punktu widzenia twórcy gier komputerowych jest zasadnicza różnica między przestrzenią modelu, a przestrzenią świata. W aplikacji 3D świat jest technicznie nieskończony, wobec czego trudno jest w nim ustalić położenie obiektów. Dlatego zdefiniowano punkt początkowy, który ma współrzędne (0, 0, 0). Powyższe współrzędne oznaczają odpowiednio współrzędną poziomą, współrzędną pionową oraz współrzędną wyznaczającą głębię.

5 W przestrzeni modelu zakładamy, że każdy obiekt ma swój punt zerowy, z którego wychodzą osie współrzednych x, y oraz z. Tym punktem jest zazwyczaj środek obiektu. Definicja Przekształcenie pozwalające na przedstawianie obiektów trójwymiarowych na płaszczyźnie (rzutni) nazywamy rzutowaniem.

6 Rysunek: Obiekt umieszczony w początku układu współrzędnych

7 Rysunek: Obiekt umieszczony w punkcie (3, 2, 1)

8 W grafice komputerowej stosuje się dwa rodzaje rzutów: perspektywiczny - gdy w scenie określimy położenie obserwatora; równoległy - gdy w scenie nie określimy położenia obserwatora lub też gdy obserwator znajduje się w nieskończoności.

9 Rzut perspektywiczny Definicja (źródło Wikipedia) Perspektywa - określenie stosowane w architekturze, malarstwie, fotografii i innych sztukach wizualnych oznaczające sposób oddania trójwymiarowych obiektów i przestrzeni na płaszczyźnie. Istnieje kilka rodzajów perspektywy: linearna (zbieżna, geometryczna), barwna (malarska), kulisowa, powietrzna, odwrócona, perspektywa krzywoliniowa (poprawna).

10 perspektywiczne jest zbliżone do tego, co widzimy własnymi oczami: obraz jest bardziej realistyczny i posiada wrażenie głębi (obiekty znajdujące na dalszym planie są mniejsze, ponieważ obiekty trójwymiarowenie nie są rzutowane wzdłuż linii równoległych). W rzutowaniu perspektywicznym promienie rzutujące tworzą pęk prostych.

11 Rysunek: perspektywiczne

12 Rysunek: Perspektywa

13 Rysunek: Perspektywa

14 Rysunek: Perspektywa

15 Na podstawie powyższych zdjęć widać, że linie zbiegają do jednego punktu, zwanego punktem zbiegu. Rzut perspektywiczny zwykle dzieli się na: jednopunktowy dwupunktowy; trzypunktowy. Powyższy podział zależy od orientacji płaszczyzny rzutowania w kierunku osi rzutowanego obiektu (gdy przy wyborze rzutni jedna z krawędzi rzutowanego obiektu nie jest równoległa do rzutni, to mamy do czynienia z rzutem jednopuktowym, gdy dwie nie są równległe - z dwupunktowym, a gdy trzy - z trzypunktowym).

16 Rysunek: Rzut jednopunktowy

17 Rysunek: Rzut dwupunktowy

18 Rysunek: Rzut trzypunktowy

19 W każdym rzucie perspektywicznym istnieje przynajmniej jedna rodzina prostych równoległych i nierównoległych do rzutni, taka, że rzuty tych prostych przecinają się w jednym punkcie. Ten punkt nazywamy punktem zbiegu. W zależności od położenia rzutni względem obiektu mówimy o rzutowaniu perspektywicznym jednozbiegowym, dwuzbiegowym lub trójzbiegowym.

20 Rysunek: jednozbiegowe

21 Rysunek: dwuzbiegowe

22 Załóżmy, że wykonujemy rzutowanie wzłuż osi Z. Wówczas gdzie x = x y = y d z + d d z + d x, y, z są współrzędnymi w przestrzeni trójwymiarowej; x, y są współrzędnymi rzutowanego punktu na ekranie (czyli w przestrzeni dwuwymiarowej); d - jest odległością od obserwatora (oczywiście zakładamy, że obserwator także znajduje się na osi Z).

23 Ostrosłup widzenia Zauważmy, że dotychczas nie zwróciliśmy w ogóle uwagi na to, które obiekty przestrzeni zostaną zrzutowane. Każdy użytkownik aparatu fotograficznego wie, że tylko wybrany przez niego fragment przestrzeni zostanie utrwalony na zdjęciu. To znaczy, że operacje matematyczne wynikające z rzutowania powinny zostać zrealizowane tylko w odniesieniu do określonego zbioru punktów. Jeżeli przyjmiemy, że dokonujemy rzutowania perspektywicznego na płaszczyznę i interesuje nas pewien prostokąt obrazu jako część rzutni, to środek rzutowania i prostokąt obrazu wyznaczają pewien fragment przestrzeni. Jeżeli do tego dodamy dwie płaszczyzny równoległe do rzutni, które ograniczają wybrany fragment obiektu, to powstanie figura będąca ostrosłupem ściętym o podstawie prostokątnej nazywana ostrosłupem widzenia.

24 Rysunek: Ostrosłup widzenia O - środek rzutowania R - rzutnia S1, S2 - płaszczyzny odcinające

25 Rzut równoległy Z rzutowaniem równoległym mamy najczęściej do czynienia w różnego typu zastosowaniach technicznych, np. rzuty prostokątne na 3 lub 6 płaszczyzn w tradycyjnym rysuneku technicznym. równoległe nie pozwala na przedstawienie obiektu zgodnie z naszym wyobrażeniem. Umożliwia natomiast zdefiniowanie wymiarów danego przedmiotu poprzez zachowanie równoległości prostych oraz proporcji długości odcinków równoległych. Jednym z rodzajów rzutowania równoległego jest aksonometria. Cechą charakterystyczną aksonometrii jest dążenie do zachowania rzeczywistych wymiarów rzutowanego obiektu (przynajmniej w jednym kierunku).

26 Rysunek: równoległe

27 W metodzie aksonometrycznej rzutnią jest pewna płaszczyzna, dowolnie ustawiona względem osi x, y oraz z układu współrzędnych o początku w punkcie 0, a sam przedmiot umieszcza się w układzie współrzednych tak, że jego krawędzie oraz płaszczyzny są równoległe lub prostopadłe do osi układu. Oczywiście obraz przedmiotu na rzutni aksonometrycznej zależy od ustawienia układu współrzędnych względem płaszczyzny rzutowej oraz kierunku rzutowania. Rzut można wykonać w kierunku prostopadłym do rzutni lub też ukośnym. W pierwszym przypadku mówimy o aksonometrii prostokątnej, a w drugim o aksonometrii ukośnej.

28 Rysunek: Problem z rzutowniem równoległym

29 Rysunek: Problem z rzutowniem równoległym

30 W aksonometrii obiekty trójwymiarowe odwzorowywane są przez figury dwuwymiarowe w następujący sposób: odcinki pozostają odcinkami; mogą się zmieniać jedynie ich długości; odcinki równoległe pozostają równoległe; jednocześnie są jednakowo skracane lub wydłużane; rzutem okręgu jest elipsa lub okrąg, jeśli leży w płaszczyźnie równoległej do rzutni.

31 aksonometryczne W rzutowaniu aksonometrycznym: linie projekcji są równoległe tak w rzeczywistości, jak i na płaszczyźnie projekcji; obiekt jest obracany wzdłuż jednej lub więcej osi względem płaszczyzny projekcji; płaszczyzna lub osie obiektu nie są równoległe do płaszczyzny projekcji tak, że różne części danego obiektu są widoczne w tym samym obrazie.

32 Niezwykle istotną właśnością aksonometrii jest jej związek pomiędzy wielkością obiektów w przestrzeni świata i przestrzeni rzutowej, niezależnie od położenia obiektów w przestrzeni rzutowej. W perspektywie liniowej obiekty stają się mniejsze, gdy się od nich oddalamy. Inaczej sytuacja wygląda w przypadku perspektywy aksonometrycznej. Tutaj możemy zmierzyć wielkość przedmiotu na rysunku aksonometrycznym i dowiedzieć się, jakie wymiary ma ten obiekt w rzeczywistości (musimy znać jedynie skalę rysunku i właściwości projekcji). W przypadku perspektyty liniowej nie jesteśmy w stanie odtworzyć rzeczywistych wymiarów przedmiotu.

33 Własności perspektywy aksonometrycznej: Brak punktów zbiegu. Umożliwia to przewijanie dużych obrazów. Widok ma tę samą perspektywę w każdym punkcie. Linie, które są równoległe w przestrzeni trójwymiarowej pozostają równoległe na obrazie dwuwymiarowym. Obiekty leżące dalej mają ten sam rozmiar, co obiekty bliskie; obiekty te nie są mniejsze, gdy się od nich oddalamy. Jeśli znamy skalę osi, możemy zmierzyć wielkość rozmiar obiektu (długość, wysokość, głębokość) bezpośrednio z obrazu, niezależnie od jego pozycji na osi z; stąd nazwa aksonometria. Projekcje aksonometryczne są powszechnie stosowane do rysunków technicznych.

34 Wyróżniamy trzy typy rzutowania aksonometrycznego: izometryczne; dimetryczne; trimetryczne.

35 izometryczne Izometria - wszystkie osie układu prostokątnego w przestrzeni tworzą taki sam kąt z rzutnią. Ich obrazy ulegają jednakowemu skrótowi, wobec czego na rzutni powstaje obraz trzech osi tworzących pomiędzy sobą kąty po 120 każdy. Wymiary przedmiotu równoległe do którejkolwiek osi ulegają jednakowemu skróceniu 0, 816 : 1 (po zaokrągleniu 0, 82 : 1) w stosunku do rysunku przedmiotu w rzucie prostokątnym. W praktyce często pomija się wpływ skrótu.

36 Rysunek: Układ osi dla rzutu izometrycznego

37 Rysunek: Przedmiot w rzucie izometrycznym

38 Izometria w grach komputerowych Gry komputerowe z odwzorowaniami izometrycznymi często są oparte na kafelkach. Żeby połączyć kafelki, projektant gier musi wziąć pod uwagę w jaki posób przekątne są rysowane w dyskretnych krokach. Jak się okazuje, linia pod kątem 30 stopni (sinus tego kąta oczywiście wynosi 0, 5) powoduje, że kroki są zbyt nieregularne. Natomiast linia pod kątem, której tangens wynosi 0, 5 ma ładny, regularny wzorzec: dwa kroki w prawo i jeden krok do góry. Wobec tego projekcja izometryczna używana w większości gier powoduje nachylenie osi x oraz y w przybliżeniu pod kątem 27 stopni (dokładniej: kąt nachylenia wynosi arc tg 0, 5). Stąd romb jest dwukrotnie szerszy, niż wyższy. Dlatego w wielu źródłach skala izometrii wynosi 1 : 2.

39 Rysunek: Przedmiot w rzucie izometrycznym w grach komputerowych h w = 1 2

40 Przekształcenie z 3D do 2D Przekształcenie ze współrzędnych (x, y, z) do współrzędnych (x, y ) dokonamy za pomocą następujących wzorów: x = (x z) cos 30 y = y + (x + z) sin 30

41 Przekształcenie z 3D do 2D w grach komputerowych Przekształcenie ze współrzędnych (x, y, z) do współrzędnych (x, y ) na ekranie dokonamy za pomocą następujących wzorów: x = x z y = y + x + z 2

42 dimetryczne Dimetria - dwie z osi układu prostokątnego tworzą z rzutnią jednakowe kąty, a zatem układ współrzędnych posiada jednakowe skróty na co najmniej dwóch osiach. Wymiary przedmiotu równoległe od osi y lub z są przedstawiane bez zkrótów, natomiast wymiary równoległe do osi x ulegają skróceniu o połowę.

43 Rysunek: Układ osi dla rzutu dimetrycznego

44 Rysunek: Przedmiot w rzucie dimetrycznym

45 Dimetria w grach komputerowych W przypadku dimetrii oś z jest nachylona w przybliżeniu pod kątem 27 stopni (dokładnie pod kątem arc tg 0, 5). Jest to taki sam kąt, jak w przypadku rzutu izometrycznego. Skala jest następujca: szerokość sześcianu mierzona wzdłuż osi x jest połową szerokości sześcianu widocznego z przodu. Warto zauważyć, że w przypadku dimetrii współczynnik skali jest stosowany do odległości mierzonej wzdłuż osi x (a nie jak w przypadku izometrii - względem osi z).

46 Rysunek: Przedmiot w rzucie dimetrycznym w grach komputerowych h w = 1 6

47 Przekształcenie z 3D do 2D Przekształcenie ze współrzędnych (x, y, z) do współrzędnych (x, y ) dokonamy za pomocą następujących wzorów: x = x cos 7 + y = y + z sin 42 2 z cos 42 2 x sin 7

48 Przekształcenie z 3D do 2D w grach komputerowych (widok z boku) Przekształcenie ze współrzędnych (x, y, z) do współrzędnych (x, y ) na ekranie dokonamy za pomocą następujących wzorów: x = x + z 2 y = y + z 4

49 Przekształcenie z 3D do 2D w grach komputerowych (widok z góry) Przekształcenie ze współrzędnych (x, y, z) do współrzędnych (x, y ) na ekranie dokonamy za pomocą następujących wzorów: x = x + z 4 y = y + z 2

50 Mapy heksagonalne w izometrii Multimedialne gry planszowe (tak jak tradycyjne gry planszowe) rozgrywają się na planszy, która jest podzielona na niewielkie pola. Najczęściej są w kształcie: kwadratu; rombu; sześciokąta.

51 Rysunek: Plansza z kwadratowymi polami

52 Dla mapy posiadającej kwadratowe pola mamy następujące wzory: x = współrzędnax szerokość y = współrzędnay wysokość

53 Przykład Niech: szerokość = 10, wysokość = 10, współrzędnax = 1, współrzędnay = 2. Wówczas x = 10 1 = 10 y = 10 2 = 20 Stąd [x, y] = [10, 20].

54 Rysunek: Przykład

55 Rysunek: Plansza z polami w kształcie rombu

56 Dla mapy posiadającej pola w kształcie rombów ułożonych jak powyżej mamy następujące wzory: x = współrzędnax szerokość + (współrzędnay % 2) szerokość 2 y = współrzędnay wysokość 2

57 Przykład Niech: szerokość = 10, wysokość = 10, współrzędnax = 1, współrzędnay = 2. Wówczas x = (2%2) 10 2 = = 10 Stąd y = = 10 [x, y] = [10, 10].

58 Rysunek: Przykład

59 Rysunek: Plansza z polami w kształcie rombu

60 Dla mapy posiadającej pola w kształcie rombów ułożonych jak powyżej mamy następujące wzory: x = (współrzędnax współrzędnay) szerokość 2 y = (współrzędnax + współrzędnay) wysokość 2

61 Przykład Niech: szerokość = 10, wysokość = 10, współrzędnax = 1, współrzędnay = 2. Wówczas x = (1 2) 10 2 = 5 y = (1 + 2) 10 2 = 15 Stąd [x, y] = [ 5, 15].

62 Rysunek: Przykład

63 Rysunek: Plansza z polami w kształcie sześciokąta

64 Dla mapy posiadającej pola w kształcie sześciokątów ułożonych jak powyżej mamy następujące wzory: x = współrzędnax szerokość + (współrzędnay % 2) szerokość 2 y = współrzędnay wysokość 2

65 Przykład Niech: szerokość = 10, wysokość = 10, współrzędnax = 1, współrzędnay = 2. Wówczas x = (2%2) 10 2 = = 10 Stąd y = = 10 [x, y] = [10, 10].

66 Rysunek: Przykład

67 Rysunek: Plansza z polami w kształcie sześciokąta

68 Dla mapy posiadającej pola w kształcie sześciokątów ułożonych jak powyżej mamy następujące wzory: x = (współrzędnax współrzędnay) szerokość 2 y = (współrzędnax + współrzędnay) wysokość 2

69 Przykład Niech: szerokość = 10, wysokość = 10, współrzędnax = 1, współrzędnay = 2. Wówczas x = (1 2) 10 2 = 5 y = (1 + 2) 10 2 = 15 Stąd [x, y] = [ 5, 15].

70 Rysunek: Wysokość pola w kształcie sześciokąta

71 Należy zwrócić uwagę, że w przypadku pól w kształcie sześciokątów dosyć mało intuicyjnie rozumiemy wysokość pola. Rysunek: Wyznaczanie wysokości

72 Ponieważ pola zakreskowane są sobie równe, to wysokością jest również następujący odcinek: Rysunek: Wyznaczanie wysokości

73 Poruszanie się po planszy Ważnym zagadnieniem z punktu widzenia gier komputerowych opartej na polach jest przechodzenie z jednego pola na inne. W zasadzie - w zależności od typu pola - aby poruszyć się w danym kierunku wystarczy dodać odpowiednie liczby.

74 Chodzenie po polach w kształcie kwadratów kierunek współrzędna X współrzędna Y północ (N) 0-1 północny wschód (NE) 1-1 wschód (E) 1 0 południowy wschód (SE) 1 1 południe (S) 0 1 południowy zachód (SW) -1 1 zachód (W) -1 0 północny zachód(nw) -1-1

75 Rysunek: Plansza o polach w kształcie kwadratów Na przykład: pole NE = (2, 2) + (współrzędna X, współrzędna Y) = (2, 2) + (1, 1) = (3, 1).

76 Chodzenie po polach w kształcie rombów kierunek współrzędna X współrzędna Y północ (N) -1-1 północny wschód (NE) 0-1 wschód (E) 1-1 południowy wschód (SE) 1 0 południe (S) 1 1 południowy zachód (SW) 0 1 zachód (W) -1 1 północny zachód(nw) -1 0

77 Rysunek: Plansza o polach w kształcie rombów Na przykład: pole NE = (2, 2) + (współrzędna X, współrzędna Y) = (2, 2) + (0, 1) = (2, 1).

78 Chodzenie po polach w kształcie sześciokątów kierunek współrzędna X współrzędna Y północ (N) 0-2 północny wschód (NE) współrzędna y %2-1 wschód (E) 1 0 południowy wschód (SE) współrzędna y %2 1 południe (S) 0 2 południowy zachód (SW) współrzędna y %2 1 1 zachód (W) -1 0 północny zachód(nw) współrzędna y %2 1-1

79 Rysunek: Plansza o polach w kształcie sześciokątów Na przykład: pole NE = (2, 2) + (współrzędna X, współrzędna Y) = (2, 2) + (0, 1) = (2, 1).

płaskie rzuty geometryczne

płaskie rzuty geometryczne płaskie rzuty geometryczne równoległe perspektywiczne aksonometryczne izometryczne dimetryczne ukośne (trimetryczne) kawalerskie wojskowe prostokątne gabinetowe Rzuty aksonometryczne z y Rzut aksonometryczny

Bardziej szczegółowo

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów.

Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. RZUTOWANIE AKSONOMETRYCZNE Rzuty aksonometryczne służą do poglądowego przedstawiania przedmiotów. W metodzie aksonometrycznej rzutnią jest płaszczyzna dowolnie ustawiona względem trzech osi,, układu prostokątnego

Bardziej szczegółowo

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie

aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie aksonometrie trójosiowe odmierzalne odwzorowania na płaszczyźnie Przykładowy rzut (od lewej) izometryczny, dimetryczny ukośny i dimetryczny prostokątny Podział aksonometrii ze względu na kierunek rzutowania:

Bardziej szczegółowo

Trójwymiarowa grafika komputerowa rzutowanie

Trójwymiarowa grafika komputerowa rzutowanie Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki

WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE PROSTOKĄTNE RYSUNEK TECHNICZNY BUDOWLANY MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl WWW http://home.agh.edu.pl/olesiak

Bardziej szczegółowo

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

RYSUNEK ODRĘCZNY PERSPEKTYWA

RYSUNEK ODRĘCZNY PERSPEKTYWA RYSUNEK ODRĘCZNY PERSPEKTYWA WYKŁAD 3B DR INŻ. BEATA SADOWSKA rysunek odręczny budowlany rysunek techniczny stwarza możliwość przekazu informacji stwarza możliwość przekazu informacji ułatwia porozumienie

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

Grafika komputerowa Wykład 4 Geometria przestrzenna

Grafika komputerowa Wykład 4 Geometria przestrzenna Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe

Bardziej szczegółowo

Spis treści. Słowo wstępne 7

Spis treści. Słowo wstępne 7 Geometria wykreślna : podstawowe metody odwzorowań stosowane w projektowaniu inżynierskim : podręcznik dla studentów Wydziału Inżynierii Lądowej / Renata A. Górska. Kraków, 2015 Spis treści Słowo wstępne

Bardziej szczegółowo

Geometria wykreślna 7. Aksonometria

Geometria wykreślna 7. Aksonometria Geometria wykreślna 7. Aksonometria dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I SANDRO DEL PRETE,, The quadrature of the

Bardziej szczegółowo

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.

Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE wg PN-EN ISO 5456-2 rzutowanie prostokątne (przedstawienie prostokątne) stanowi odwzorowanie geometrycznej postaci konstrukcji w postaci rysunków dwuwymiarowych. Jest to taki rodzaj

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

METODA RZUTÓW MONGE A (II CZ.)

METODA RZUTÓW MONGE A (II CZ.) RZUT PUNKTU NA TRZECIĄ RZUTNIĘ METODA RZUTÓW MONGE A (II CZ.) Dodanie trzeciej rzutni pozwala na dostrzeżenie ważnej, ogólnej zależności. Jeżeli trzecia rzutnia została postawiona na drugiej - pionowej,

Bardziej szczegółowo

DLA KLAS 3 GIMNAZJUM

DLA KLAS 3 GIMNAZJUM DLA KLAS 3 GIMNAZJUM ROLA RYSUNKU W TECHNICE Rysunek techniczny - wykonany zgodnie z przepisami i obowiązującymi zasadami - stał się językiem, którym porozumiewają się inżynierowie i technicy wszystkich

Bardziej szczegółowo

RYSUNEK ODRĘCZNY PERSPEKTYWA

RYSUNEK ODRĘCZNY PERSPEKTYWA RYSUNEK ODRĘCZNY PERSPEKTYWA P WYKŁAD 7 DR INś. BEATA SADOWSKA WTRĄCENIE (STROPODACHY WENTYLOWANE) WWW.BUILDEN.NEOSTRADA.PL, WWW.ABC-DACHY.PL WTRĄCENIE (STROPODACHY WENTYLOWANE) C.D. WTRĄCENIE (STROPODACHY

Bardziej szczegółowo

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 5. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 5. Obroty i

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie

3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

RZUTOWANIE PROSTOKĄTNE

RZUTOWANIE PROSTOKĄTNE RZUTOWANIE PROSTOKĄTNE WPROWADZENIE Wykonywanie rysunku technicznego - zastosowanie Rysunek techniczny przedmiotu jest najczęściej podstawą jego wykonania, dlatego odwzorowywany przedmiot nie powinien

Bardziej szczegółowo

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku

Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku Zanim wykonasz jakikolwiek przedmiot, musisz go najpierw narysować. Sam rysunek nie wystarczy do wykonania tego przedmiotu. Musisz podać na rysunku jego wymiary (długość, szerokość, grubość). Wymiary te

Bardziej szczegółowo

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch.

Geometria wykreślna. 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Geometria wykreślna 1. Rysunek inżynierski historia. Metody rzutowania. Rzut prostokątny na dwie rzutnie. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

w jednym kwadrat ziemia powietrze równoboczny pięciobok

w jednym kwadrat ziemia powietrze równoboczny pięciobok Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego

Bardziej szczegółowo

kurs rysunku wrocław grupa początkująca

kurs rysunku wrocław grupa początkująca kurs rysunku wrocław grupa początkująca Zajęcia Zadanie 1 z 2 czas na zadanie 90min Krok Temat Trzymając kartkę w poziomie podziel ją na dwie równe części. Następnie na wysokości 1/3 liczonej od dołu kartki

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Współrzędne geograficzne

Współrzędne geograficzne Współrzędne geograficzne Siatka kartograficzna jest to układ południków i równoleżników wykreślony na płaszczyźnie (mapie); jest to odwzorowanie siatki geograficznej na płaszczyźnie. Siatka geograficzna

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5

Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Ćwiczenie 9. Rzutowanie i wymiarowanie Strona 1 z 5 Problem I. Model UD Dana jest bryła, której rzut izometryczny przedstawiono na rysunku 1. (W celu zwiększenia poglądowości na rysunku 2. przedstawiono

Bardziej szczegółowo

Rzuty, przekroje i inne przeboje

Rzuty, przekroje i inne przeboje Rzuty, przekroje i inne przeboje WYK - Grafika inżynierska Piotr Ciskowski, Sebastian Sobczyk Wrocław, 2015-2016 Rzuty prostokątne Rzuty prostokątne pokazują przedmiot z kilku stron 1. przedmiot ustawiamy

Bardziej szczegółowo

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne

Π 1 O Π 3 Π Rzutowanie prostokątne Wiadomości wstępne 2. Rzutowanie prostokątne 2.1. Wiadomości wstępne Rzutowanie prostokątne jest najczęściej stosowaną metodą rzutowania w rysunku technicznym. Reguły nim rządzące zaprezentowane są na rysunkach 2.1 i 2.2.

Bardziej szczegółowo

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ

GEOPLAN Z SIATKĄ TRÓJKĄTNĄ TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan

Bardziej szczegółowo

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury

Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA

WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA WYMAGANIA EDUKACYJNE Przedmiot: Pracownia dokumentacji Klasa: I Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK DROGOWNICTWA 311206 Lp Wiadomości wstępne, normy rysunkowe 1 Lekcja organizacyjna

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.

Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu. Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,

Bardziej szczegółowo

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.

Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje. Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia

Bardziej szczegółowo

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA

RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA RYSUNEK TECHNICZNY I GRAFIKA INśYNIERSKA WYKŁAD 2 dr inŝ. Beata Sadowska 1. Zasady rzutowania elementów i obiektów budowlanych 2. Rzuty budynku 3. Wymiarowanie rysunków architektoniczno-budowlanych Normy

Bardziej szczegółowo

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy

Zajęcia techniczne kl. I - Gimnazjum w Tęgoborzy Temat 14 : Podstawowe wiadomości o rysunku technicznym. Prezentacja Pismo techniczne.pps 1. - język porozumiewawczy między inżynierem a konstruktorem. Jest znormalizowany, tzn. istnieją normy (przepisy)

Bardziej szczegółowo

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.

Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy. 1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.

1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach. 12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie

Bardziej szczegółowo

STEREOMETRIA. Poziom podstawowy

STEREOMETRIA. Poziom podstawowy STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola

Bardziej szczegółowo

Widoki WPROWADZENIE. Rzutowanie prostokątne - podział Rzuty prostokątne dzieli się na trzy rodzaje: widoki,.przekroje, kłady.

Widoki WPROWADZENIE. Rzutowanie prostokątne - podział Rzuty prostokątne dzieli się na trzy rodzaje: widoki,.przekroje, kłady. Widoki WPROWADZENIE Rzutowanie prostokątne - podział Rzuty prostokątne dzieli się na trzy rodzaje: widoki, przekroje, kłady Widoki obrazują zewnętrzną czyli widoczną część przedmiotu Przekroje przedstawiają

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

Zasady rzutowania prostokątnego. metodą europejską. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu. Zasady rzutowania prostokątnego

Zasady rzutowania prostokątnego. metodą europejską. Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu. Zasady rzutowania prostokątnego Zasady rzutowania prostokątnego metodą europejską Opracował: Robert Urbanik Zespół Szkół Mechanicznych w Opolu Wiadomości ogólne Rzutem nazywamy rysunkowe odwzorowanie przedmiotu lub bryły geometrycznej

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Odwzorowanie rysunkowe przedmiotów w rzutach

Odwzorowanie rysunkowe przedmiotów w rzutach Odwzorowanie rysunkowe przedmiotów w rzutach Rzutem nazywamy rysunkowe odwzorowanie przedmiotu lub bryły geometrycznej na płaszczyźnie rzutów, zwanej rzutnią, którą jest płaszczyzna rysunku. Rzut każdej

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich.

Wykład 1. Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Wykład 1 Wprowadzenie do przedmiotu. Powierzchnia odniesienia w pomiarach inżynierskich. Dr inż. Sabina Łyszkowicz Wita Studentów I Roku Inżynierii Środowiska na Pierwszym Wykładzie z Geodezji wykład 1

Bardziej szczegółowo

Wstęp do grafiki inżynierskiej

Wstęp do grafiki inżynierskiej Akademia Górniczo-Hutnicza Wstęp do grafiki inżynierskiej Rzuty prostokątne Prokop ŚRODA Marcin KOT Wydawnictwo Naukowe AKAPIT Recenzenci: prof. dr hab. inż. Wiesław Rakowski dr hab. inż. Jerzy Zych Rozdziały

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku

Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku Konkurs dla gimnazjalistów Etap II 8 lutego 017 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE

RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SERIA GEOMATYKA RZUT CECHOWANY ODWZOROWANIA INŻYNIERSKIE SKRYPT DLA STUDENTÓW STUDIÓW NIESTACJONARNYCH KIERUNKÓW BUDOWNICTWO I INŻYNIERIA ŚRODOWISKA dr inż. arch. DOMINIKA WRÓBLEWSKA ISBN 978-83-934609-9-1

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7

MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi. Arkusz A I. Strona 1 z 7 MATEMATYKA POZIOM PODSTAWOAWY Kryteria oceniania odpowiedzi Arkusz A I Strona z 7 Wersja A Odpowiedzi Zadanie 2 3 4 5 6 7 8 9 0 2 3 Odpowiedź C D B B C C A D A B A B C Zadanie 4 5 6 7 8 9 20 2 22 23 24

Bardziej szczegółowo

Ćwiczenie nr 5 i 6 Przygotowanie dokumentacji technicznej dla brył

Ćwiczenie nr 5 i 6 Przygotowanie dokumentacji technicznej dla brył Ćwiczenie nr 5 i 6 Przygotowanie dokumentacji technicznej dla brył Zadanie A Celem będzie wykonanie rysunku pokazanego NA KOŃCU zadania. Rysując proszę się posłużyć podanymi tam wymiarami. Pamiętajmy o

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE DLA KLAS 4-6 SP ROK SZKOLNY 2015/2016 Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej

Bardziej szczegółowo

Animacje z zastosowaniem suwaka i przycisku

Animacje z zastosowaniem suwaka i przycisku Animacje z zastosowaniem suwaka i przycisku Animacja Pole równoległoboku Naukę tworzenia animacji uruchamianych na przycisk zaczynamy od przygotowania stosunkowo prostej animacji, za pomocą, której można

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A

WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A WYDZIAŁ ARCHITEKTURY POLITECHNIKI GDAŃSKIEJ T E S T K W A L I F I K A C Y J N Y Z P R E D Y S P O Z Y C J I D O Z A W O D U A R C H I T E K T A CZĘŚĆ I GDAŃSK, 14 CZERWCA 2008, GODZ 9.00 CZAS TRWANIA TESTU

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Obraz realistyczny Pojęcie obrazu realistycznego jest rozumiane w różny sposób Nie zawsze obraz realistyczny

Bardziej szczegółowo

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9

Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej

Bardziej szczegółowo

SZa 98 strona 1 Rysunek techniczny

SZa 98 strona 1 Rysunek techniczny Wstęp Wymiarowanie Rodzaje linii rysunkowych i ich przeznaczenie 1. linia ciągła cienka linie pomocnicze, kreskowanie przekrojów, linie wymiarowe, 2. linia ciągła gruba krawędzie widoczne 3. linia kreskowa

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo